Implementation of Simulation Based Design Tools
in Practice

J A Clarke
Energy Simulation Research Unit
University of Strathclyde, UK

D F Mac Randal
Informatics Department
Rutherford Appleton Laboratory, UK

Over the past decade developments in the building smulation field have given rise to the prospect of a new generation of
design tool which has the potential to allow rigorous hypothes's testing at the design stage. While powerful at their core,
simulation based design tools suffer from several user interface limitations. This paper describes an attermpt to solve some of
these problems by devdloping an Inteligent Front End authoring environment for building performance appraisal in general.
The architecture of the developed system, termed IFe is described and its use explained by demondtrating its application in the
context of the ESP-r system for building environmental performance prediction. Pie paper then describes how some dements of
the IFe are being used within the CEC's COMBINE project to explore the architecture of an inteligent, integrated building

design system.

Introduction

From the viewpoint of contemporary practice in
building design, simulation programs are over
engineered - both in terms of the functionality they
offer and the information requirements to service
their theoretical algorithms. This gap, between
design practice and simulation tool capabilities,
can be overcome either by reducing the order of
the applications (and hence their information
needs) or by endowing the applications with
knowledge based interfaces which are sensitive to
the needs of designers and are well mapped to the
information flows of the design process. This
paper is concerned with the latter prospect.

Firstly, the paper describes the architecture of a

knowledge based interface construction environ-

ment developed under SERC funding. This

environment, known as the IFe (Clarke and Mac

Randal 1989), is capable of

® supporting design concurrency (designer to
designer and designer(s) to application(s)
inter-communication)

e preserving audit trail (who did what, when,
why)

® accommodating user interface preferences
(style of interaction, feedback and tutoring)

® evolving the product model (incremental prob-
lem definition and intelligent defaulting)

® and handling applications (data needs, results
interpretation and operational control).

93

Secondly, the paper describes the use of the IFe
environment to prototype an intelligent interface
for the ESP-r system (Clarke 1985). This graphi-
cal, knowledge based interface is able to accept
information against concepts matched to different
user types and then, by inference, to complete a
full problem specification as required by ESP-r. It
is also able to preserve the process chronicle,
comprising the user dialogue, the problem evolu-
tion and the application returns.

Finally, the paper describes how elements of the
IFe - and in particular its ‘Blackboard’ approach to
information sharing and its knowledge based
approach to user dialogue support, product model
evolution and application control - are being
applied within the European Commission’s COM-
BINE project (Augenbroe 1991) to control
disparate design tools as they access a central pro-
duct model under design process rules.

The IFe System

The IFe (Figure 1) is built from cooperating
modules organised around a central communica-
tions Blackboard to facilitate multiple use of infor-
mation. These modules run asynchronously and
can examine the Blackboard for information, post-
ing results back to it.

Blackboard

This lies at the heart of the system and has two
major functions. Firstly, it stores the data
representing the current state of the problem

definition as input by a user or inferred by the
Knowledge Handler. Secondly, it acts as a com-
munication centre for the other modules.

Blackboard clients are divided into two classes:
those at the user-end (the Dialogue, Knowledge
and User Handlers) concerned with extracting from
the user the building description and the appraisal
definition, and those at the back-end (the
Appraisal, Data and Application Handlers) con-
cerned with creating the input data and control
instructions to ‘drive’ the application(s). The
dialogues corresponding to these two classes are
held within separate communication areas on the
Blackboard. All Blackboard clients are auto-
nomous processes running asynchronously, with no
selection criteria imposed on incoming messages.

The Blackboard is not just a passive data structure.
Clients can ask it to create new, named areas. The
various clients can then post requests and informa-
tion to these areas, the name of the poster and the
time of posting being recorded. Clients can either
explicitly ask the Blackboard for information by
identifying the area and the concept, or can ask the
Blackboard to keep them informed of any new
information posted to a particular area. Firstly,
this avoids clients having to poll the Blackboard.
Secondly, it provides a mechanism whereby two,
or more clients can create a Blackboard area to
serve as a communication channel between them.
For example, in the current ESP-r implementation
a "user dialogue" area is used to pass information
between the Dialogue and Knowledge Handlers in
order to validate user inputs, provide essential
feedback and feed the inference process.

Dialogue Handler

The Dialogue Handler is responsibie for managing
and monitoring all user interactions and imple-
menting the level of communication as necessary
for a given user and task combination. It acts to
coordinate the interaction with users against User
Class definitions which establish the data and
modelling concepts that are acceptable to particu-
Iar users such as architects, engineers, modelling
specialists, students and so on. By possessing a
configurable human-computer interface, the Dialo-
gue Handler is able to produce interface instances
which are tailored to a user’s conceptual outlook,
level of experience and stage reached in the design
process. Unlike conventional programs where the
interface remains static throughout a session, by
keeping track of a user’s progress, the Dialogue
Handler can, in conjunction with the User and
Knowledge Handlers, tailor the dialogue to the
user’s level of expertise and performance history.

The basic function of the Dialogue Handler is to
pass the user’s inputs to the Blackboard and to
pass messages and requests, as posted by other
Blackboard clients, back to the user. To perform

94

this function, the Dialogue Handler has several
mechanisms at its disposal. The primary mechan-
ism is a generic forms program which can manipu-
late a set of forms which correspond to a given
User Class. Each form entity (a labelled field, a
button, a multi-option pop-up, a bit-map, etc.)
corresponds to a particular Concept within the
active User Class: for example window width,
number of rooms, project name, simulation time-
step and so on. Groupings of related concepts are
located on the same form to comprise a Meta-
Concept: for example building geometry, construc-
tion, control system, appraisal definition and so on.
Meta-Concepts can contain nested Meta-Concepts,
allowing a complete hierarchy to be specified. In
this way a set of Meta-Concepts (forms) can be
used to define a given User Class in terms of only
those related Concepts that are deemed acceptable.
Via these forms, the user can ask about Concepts
and associate values with them. While one User
Class may involve many Concepts (many user
inputs), another may involve only a few. By rely-
ing on a greater degree of inference in the latter
case (the function of the Knowledge Handler), the
same application(s) can be offered to both users.

Knowledge Handler

The function of the Knowledge Handler is to
manipulate several independent knowledge bases
which exist to control the user dialogue, collect
and validate user entries, make whatever inferences
are appropriate and store on the Blackboard a
representation of the building and required
appraisals. This requires a mixture of conventional
procedural programming, event-driven program-
ming and rule-based inferencing. In essence the
Knowledge Handler is an autonomous inference
engine based on a Prolog interpreter (Hutchings
1986) with the ability to dynamically load partial
knowledge bases each of which are matched to the
Meta-Concepts of the active User Class. This
means that the user dialogue is at all times under
knowledge base control and that User Class
definitions, in whole or in part, can be substituted
at run-time should a particular definition prove
unsuitable. At run-time the Knowledge Handler
monitors the user dialogue as stored on the Black-
board in order to

® obtain the user’s input statements

e convert these into Prolog predicates

® use these predicates to validate the user inputs

¢ and, by inference, to further complete the prob-
lem/ appraisal definition.

In practice the Knowledge Handler has access to
several Knowledge Bases, each corresponding to a
Meta-Concept; each Knowledge Base only being
loaded when the related Meta-Concept (form) is
activated. Each Knowledge Bases exists to build
on the Blackboard that part of the problem

definition to which the Meta-Concept relates.
Based on what is already known about the prob-
lem, a Knowledge Base can deduce what concept
values are sensible (that is intelligent input valida-
tion), and how to derive appropriate default values
for Concepts required by the target application(s)
but not addressed directly by the active User Class
(that is intelligent defaulting).

Because User Classes will normally require their
own unique dialogue, Knowledge Bases are also
responsible for coordinating the user dialogue .
This is achieved by including Prolog code to pro-
vide feedback, help and guidance to the user. To
this end, a Knowledge Base contains knowledge
about the Meta-Concept to which it relates and
about the capabilities of the Dialogue Handler in
terms of its control syntax. In practice Knowledge
Bases are constructed from pre-formed predicates,
supplied with the IFe, which support dialogue and
application control, product model siorage,
inferencing, feedback and the like.

User Handler

The User Handler has two main tasks. The first is
to collect information against which a user’s pro-
gress might be judged. The second is to modify
the interaction in the case of poor user progress.

Like the Knowledge Handler, this module is based
on a Prolog interpreter. Its function is to set the
appropriate User Class, on the basis of user type
and experience information, to ensure that the sub-
sequent session is tailored to the user’s skill level
and that appropriate guidance, feedback and help is
given during the session. At the present time real,
dynamic user modelling has not been attempted.
Instead, the user is initially classified, from a data-
base or explicit user input, and the corresponding
Knowledge Base is established for use by the
Knowledge Handler.

During a session, the user’s progress is assessed by
monitoring the user dialogue as recorded on the
Blackboard. From these data the number of errors,
changes of mind, backtracks and Knowledge
Handler overrides is derived. On the basis of this,
or upon explicit user request, the User Handler can
change the User Class. From then on, the
Knowledge Handler will automatically pick up
those Meta-Concepts and Knowledge Bases associ-
ated with the new User Class. It should be recog-
nised however that the automatic mapping from
one User Class to another is a non-trivial task
which has not to date been attempted.

Appraisal Handler

In the current implementation of the IFe, users are
required to specify their appraisal objectives in
terms that the Appraisal Handler can understand -
that is the Appraisal Handler is not knowledge
based. These appraisal possibilities are made
known to the Appraisal Handler in the form of

95

parameterised Unix™ Shell scripts (Bourne 1982),
each representing a particular Performance Assess-
ment Method (PAM). It is the Appraisal Handler's
task to select the appropriate PAM and, based on
the information available on the Blackboard, to
assign suitable values for the PAM parameters.
These will include the particular application pro-
gram to be invoked at each stage in the methodol-
ogy (eg ESP-r for energy appraisal) and the values
for the design or performance parameters on the
basis of which decisions will be made (eg PMV
for comfort if the application is ESP-r). After this
task has been completed, the data is posted back to
the Blackboard where it is accessed by the Data
Handler whose function is to prepare the input data
required by the identified programs. The form of a
PAM, and its related script are described elsewhere
(Clarke and Mac Randal 1989).

Data Handler

This module creates, from the information supplied
by the user and that inferred by the Knowledge
Handler, the problem description as required by
the application(s) identified within the posted
PAM. This is achieved via a Blackboard data
searching mechanism utilising generalised pattern
matching controlied by a Data Definition Script
(DDS) which defines, again in parameterised
manner, the data preparation procedure of the tar-
geted application(s). The parameters of the DDS
define the data to be obtained from the Blackboard
based on a pattern matching technique. By execut-
ing this script, the Data Handler builds the
required data-set. Details of a DDS as established
for use with the ESP-r system are given elsewhere
(Clarke and Mac Randal 1989).

This approach ensures that the data requirements
and specific formats of multiple applications can
be extracted from a single Blackboard data model,
assuming that this data model (as defined by direct
user inputs and supplemental inference) is com-
plete. Most importantly, the Knowledge Handler’s
inference mechanism can be used to map from one
application’s data entity to the semantically
different, but extensionally similar entities of other
applications, thus ensuring input equivalence.

Application Handler

This module orchestrates the application(s) against
the selected PAM and problem definition. It also
receives the application returns for direct display
or transmission to the Dialogue Handler via the
Blackboard (usually via a results Meta-Concept
established for the purpose).

Using the IFe modules it is possible to establish
intelligent interfaces of varying complexity which
are able to converse with users in the terminology
and interaction style deemed appropriate (the

Dialogue Handler); generate problem descriptions
against a specific product model deemed subser-
vient to the targeted applications (the Dialogue and
Knowledge Handlers); collect, organise and store
this product model, and the dialogue and infer-
ences which produced it (the Knowledge Handler
and Blackboard); generate the program-specific
control inputs (the Appraisal Handler) and the
application-specific input data-sets (the Data
Handler); invoke and control the application pro-
grams (the Application Handler); and monitor the
user’s progress, giving assistance where necessary
(the User Handler). By separating the user dialo-
gue and application control functions it is possible
to connect a given interface to several applications
or, conversely, multiple interfaces (different User
Classes) to the same application(s).

Prototyping an Intelligent Interface for
ESP-r ‘

The IFe is a generic, intelligent interface produc-
tion environment capable of supporting the rapid
prototyping of knowledge based, graphical user
interfaces. To explore the system’s capabilities
and test its component parts, the system was used
to construct an intelligent interface for use with the
ESP-r system for building energy/ environmental
simulation. The underlying User Class
corresponds to a computer literate engineer.

The starting point was to understand the viewpoint
of the User Class and to relate this to the data
requirements of ESP-r. For example, while one
user may be able (or expect) to input directly
much of the data required by ESP-r, another may
have difficulty, technically or semantically, with
the same data. With the ESP-r interface described
here the assumption was that the user is able to
understand most of the data but that the interface
should assist the input process by providing
defaults, inferring values from previous inputs and
concealing the underlying data structures. Using
the standard, pre-formed predicates offered by the
IFe, interface construction proceeded in the follow-
ing steps:
¢ Identification of the concepts that the user finds
acceptable in specifying the building and the
required analysis.
e Grouping of these concepts into a hierarchy of
Meta-Concepts to help organise the collection
and processing of the user inputs.

e Establishing a Knowledge Base for each Meta-
Concept and arranging that each Concept has a
Prolog predicate to validate and store the input.

e Designing a form corresponding to each Meta-
Concept. (This requires selecting the best field
type - text, menu, button, etc. - to help the user
input the data.)

96

e Adding to each Knowledge Base the predicates
to handle the switch of focus when the user
moves from one Meta-Concept to another.
Usually when a Meta-Concept is selected,
some initialisation is necessary - for example
to remove some previously displayed Meta-
Concept or to inform/ remind the user of the
information already held/ inferred against this
Meta-Concept from a previous session. Simi-
larly, when a Meta-Concept is de-selected this
might trigger the calculation of default values
for concepts not previously set.

e Adding to the form the necessary fields (usu-
ally buttons) to allow the user to switch the
focus of discussion to another Meta-Concept
(nested form) and back again.

e Installing the Meta-Concepts (set of forms) and
matched Knowledge Bases in the IFe library.

e Updating the IFe’s User Class directory to
make the new User Class available for selec-
tion. (Further, the names of any real users of
this class can be made known to the User
Handler so that, in the absence of a specific
selection, the IFe will default to the pre-
specified User Class.)

Probably the most important aspect of interface
design is establishing the Meta-Concept hierarchy.
This should be designed to lead users naturally
through the input process while allowing them
complete control over the order in which data is
input. Figure 2 shows some of the Meta-Concepts
as as established for use with ESP-r to represent an
Engineer User Class. At the top level, a clear dis-
tinction is made between the acquisition of data
describing a problem and that which describes the
required performance appraisal: each are mutually
exclusive Meta-Concepts. On the other band, the
location and function Concepts (within the
"bld_spec” Meta-Concept) are independent of the
"geometry” Meta-Concept and hence both forms
may be displayed simultaneously. (Obviously, this
should not be taken to extremes, both to avoid
overwhelming the user with requests for data and
because of lack of screen space.) It is bere that
the dynamic nature of the Dialogue Handler and
the declarative nature of the Knowledge Handler
together permit a human-computer interaction that
is truly cooperative, neither the system nor the user
dictating the sequence of data collection. Figure 3
shows a typical screen image resulting from an IFe
session with this User Class active.

At the data collection level, the mechanics of the
interaction required careful consideration. The
provision of context-sensitive defaults, as inferred
from previously inputs and the offering of multiple
ways of supplying data makes for a more natural
interface. For example, when inputting the loca-
tion of the building, the user can:

¢ select from a set of Knowledge Base specified
locations

® type in a location name (and supply its latitude
and longitude if the location is unknown to the
Knowledge Base.

¢ or point to a specific place on a map applica-
tion from which the place name, and its lati-
tude and longitude can be deduced.

The important point is that using the Dialogue
Handler and a single Prolog predicate, the inclu-
sion of the map program was almost as simple as
providing the boxes into which the user could type
the latitude/ longitude. Based on the location,
however supplied, it is then a straightforward task
to infer values for standard and obscure Concepts
such as climate collection, site elevation, atmos-
pheric wrbidity, fuel type, control schedule (if the
building type is known) and so on. These data
could then be offered as Concept suggestions for,
as yet, unaddressed Concepts. '

The idea of providing multiple ways of supplying
data can be taken further than the simple "name or
numbers” options for specifying the location.
When inputting building geometry, for example,
ESP-r demands that exact dimension be specified.
However, in many cases, and especially at the
early design stage, such detailed information may
not be available. A completely different way of
describing a building from the traditional "what its
made of’ method is, by analogy, "its like this ...
but with these differences ...". To this end the
developed User Class includes the classification
and presentation of a set of past designs from
which selections can be made and changes applied
until an acceptable sumrogate design is obtained.
This browse and edit mechanism, though simple in
concept (and implementation), when combined
with the IFe’s inferencing mechanism allows simu-
lation programs such as ESP-r to be employed at a
much carlier design stage than is possible with
traditional interfaces no matter how user friendly.
To this browser mechanism add alternative
approaches to geometry definition based on a CAD
modellers and the like and the user now has a
range of basic but different approaches for the
definition of building geometry each adapted to a
different information context and user preference.
Figure 4 shows the geometry definition options as
established within the ESP-r interface: form filling
(the "form_fill" Meta-Concept), a CAD modeller
("draw"), foreign file import ("cad_file") or on the
basis of previous design browsing ("bld_browse").
In the first case - form filling - the user is required
to associate values with the specific data entities
which define a zone’s topography and topology.
To do this, a separatc form ("zone_geom") is
displayed for each zone. This form offers several
alternatives, from simple box dimensioning to full

97

vertex/ edge specification. Once checked, the data
is held on the Blackboard and also asserted as
facts in the Knowledge Base. In the second
option, some external CAD modeller (extemal to
the IFe but invoked by it) is used. The button
associated with this option posts a tuple to the
Blackboard requesting that the CAD modeller be
run, the results to be placed in a specified external
file. This output file is processed as a foreign file,
the third option, which requires filtering before
being imported to the IFe (where it is held in the
same manner as if it had been input using the first
option). The fourth option starts the browse pro-
gram. This scans a standard directory containing a
number of designs previously defined by, or other-
wise made known to, the IFe. Once selected, the
data for that design is loaded onto the Blackboard
and asserted within the related Knowledge Base.
The detailed geometry forms of the first option can
then be used to modify the geometry as appropri-
ate. In this way the browse facility allows past
designs to be offered to an ESP-r user so that
entire models can be easily selected and modified.

One further action is now required to complete the
ESP-r interface: the incorporation of a representa-
tive set of Performance Assessment Methods
(PAM) within the Appraisal Handler together with
the corresponding Data Definition Scripts (DDS)
within the Data Handler. When the user selects
the analysis to be carried out, the Knowledge Base
activates the appropriate PAM and DDS and pro-
vides the necessary parameterisation. As well as
invoking a specific PAM/ DDS, the predicates
associated with the "analysis" Meta-Concept can
run pre-defined groups of assessments to automati-
cally generate standard reports.

COMBINE

The COMBINE project (Augenbroe 1991) is a
European concerted action to develop an integrated
data model which can support the needs of the
range of design tools as typically employed within
the building design process. Essentially the project
entails the following tasks:

¢ The identification of the data requirements of
several design tool prototypes (for CAD, for
lighting design, for thermal design, for HVAC
design, for layout planning, etc.), the conflation
of these data into an integrated data model
(IDM) and their representation in the
EXPRESS language (Spiby P 1991) to define,
unambiguously, the semantics associated with
each data entity.

o The representation of the IDM to emerge from
the first task within an object oriented para-
digm, the encapsulation of this data model
within an object oriented database and the pro-
vision of a set of interface tools, resulting in a

general purpose data exchange system (DES).

e The building and field testing of a prototype,
integrated building design system (IBDS) using
the IDM and DES in conjunction with the
selected design tool prototypes.

e And, finally, the experimental addition of
design semantics, inter process control and
transaction management to research the feasi-
bility of producing an intelligent IBDS, or
HBDS.

It is within the context of the last two tasks that
clements of the IFe will be used to explore an
approach to the comstruction of an IBDS which
surpasses the limitations of mere data exchange by
supporting application interaction handling. This
issue will be researched by experimenting with
alternative approaches to design tool interaction
handling and scheduling - that is transaction
management superimposed on the data exchange
facilities provided by the IFe’s Blackboard. This
experimentation will, in turn, be carried out against
a background of the different possible models of
design (generate and test, goal directed search,
constraint propagation, heuristic search, auto-
nomous agents and the like) to ensure that the
IIBDS has the necessary functionality to enable at
least existing design tools to be used within these
design model contexts. (Note that the intention is
not to develop an IIBDS which adheres to any one
of these possible models of design merely to
ensure that it could.)

Specificaily, the IIBDS will be constructed against
a research programme which explores the follow-
ing issues:

e Application interaction management including
process chronicle storage and manipulation (in
support of future concurrency needs and audit
trail requirements).

¢ The imposition of inter-application control and/
or scheduling using i) the IFe’s knowledge-
based approach (ie a Prolog inference engine
configured as an additional supervisory Black-
board client and/ or ii) a programmable Black-
board facility for implementing/ enforcing pre-
specified application processing sequences.

¢ The incorporation of an DES schema searching
mechanism (ie remove the necessity for the
design tools to know the DES schema under
which the data is actually held). This could be
based on i) a simple Blackboard design’ tool
control mechanism (design tools communicate
directly with the DES on instruction from the
Blackboard) and/ or ii) full transaction process-
ing with the DES (the design tools get their
data from the Blackboard which alone com-
municates with the DES).

98

e A Blackboard extended syntax to enable a
two-way actor dialogue (the intention here is
only to handle the semantics of design tool
interaction, not the internal processes of the
design tools).

In relation to the two Blackboard/ DES interaction
possibilities: the former is the easier given the
existence of a separate DES and the fact that the
design tools are already conceptually arranged
around the DES. The latter approach - in which
the Blackboard controls the DES directly - is more
powerful in that it is extensible (any new design
tool can be accommodated by adding it to the
Blackboard), flexible (design tools can be isolated
from storage schema changes) and, if achieved,
would be the first step towards semantic informa-
tion exchange as opposed to simple data exchange.

Thus, within COMBINE, the IFe is being used as
an IIBDS prototype builder to conjecture, (rela-
tively) rapidly prototype and test alternative
approaches.

Conclusions and Future Work

An intelligent front end environment has been
developed which enables a ° human-sensitive
approach to building performance appraisal in the
context of the multiplicity of applications now
available. Given the complexity of the subject, it
will require a further R&D effort to evolve robust
products which can be used routinely to create
intelligent interfaces for the many applications and
user types.

The IFe in particular could be refined by improv-
ing the efficiency and fiexibility of its knowledge
handling, user class definition and data manipula-
tion functions. In the first two cases this could be
achieved by the development of software tools to
assist in knowledge base creation and user class
definition. This would reduce the level of comput-
ing science expertise required and so allow a
greater number of application specialists to work
with the IFe directly. In the last case a simple
schema definition language could be defined which
is capable of handling the requirements of the IFe.
The Blackboard would then be enhanced by the
addition of a mechanism to search the schema, so
that clients can request specific data without speci-
fying where in the schema it is stored. This would
greatly increase the efficiency with which new or
existing clients could be serviced, and by reducing
the need to know about the data structuring used
by other clients, will further improve the IFe’s
modularity. This, in tum, would ensure that major
new components, such as new appraisal methods
or user classes, could be added more easily in
fumre. In the longer term, the development of a
plan recognition function for the Appraisal Handler
and a user modelling capability for the User

Handler would enable the IFe to address the wider,
less technically focussed goals characteristic of
many designers.

By giving the profession access to the power of
contemporary and future software systems from a
single building description achieved from only the
information the user is able to supply, the possibil-
ity of truly integrated, multi-criteria design
appraisal is enabled. This, in turn, will allow
designers to make the necessary trade-offs in the
search for an optimum solution and so arrive at
more robust designs.

References

Augenbroe G (1991) ‘Integrated Building Perfor-
mance Evaluation in the Early Design Stages’
Proc. First Int. Symp. on Building Systems
Automation-Integration Madison.

Bourne S R (1982) The UNIX system Addison-
Wesley

Clarke J A (1985) Energy Simulation in Building
Design Adam Hilger Ltd Bristol and Boston.

Clarke J A and Mac Randal D F (1989) ‘The
Application of Intelligent Knowledge Based Sys-
tems in Building Design’, Final Grant Report, Sci-
ence and Engineering Research Council, Swindon,
England.

Hutchings A M J (ed) (1986) ‘Prolog User
Manual’ Report AIA/PSGm1/86 Al Applications
Institute, University of Edinburgh, UK.

Spiby P (Ed) (1991) ‘EXPRESS Language Refer-
ence Manual’ ISO TCI84/SC4/WG5 Document
Ni4.

99

User

User A sal
Handier mr
Forms : I l '
Maps ; | Dialogue - Appications :CAD
Geometry Blackboard i ioati
Seometry ; Handler Handier ; Applications
etc. i | -] i
! Knowledge Data i
Handler Handler
Knowiedge
Bases
Figure 1 Architecture of the IFe
start_up
analysis bld_spec
constr geometry usage plant
form_£ill draw import browse
Key:
Meta-Concept Purpose
start-up User Class setting and project identification.
analysis Selection of required PAMs.
bld_spec High level building description information (e.g. location and function).
bid_browse A building design browse facility.
geometry Building geometry definition.
form_fill Zone-by-zone geometry definition by form filling.
cad_file Building geometry definition by importing a foreign CAD file.
draw Building geometry definition by a CAD modeller.
construction Constructional attribution of defined geometry.
usage Zone operation definition.
plant Definition of plant components and networks.

Figure 2 Meta-Concepts for the ESP-r
Engineer User Class

100

IDH ssep) 1as) 1aouidusg oy jo adefop ¢ undiy

| 4
v
il | «uﬁh .
0w UOTITUIep GUoZ 03 31%3 - a
diey ¢, m — [1
X03J8n @ 03019 ¥ s
2 s 6;““0.._0\' QOWW¢ N frrrryerrre b £+ hhidd ...~ nva BAUICTNNH XOJ ONIXIN 1
..... T 3398y - 0b0g
00‘Z 000°9 000G 6z A it ~ "
004°0 000°3 000°G pg X == o
006°0 000° 000°G §2 M
00:°2 000°6 000°6 22 A e
005'2 006'9 0006 1z N
000°0 000'9 0006 02 3
000°C 000°S 000°6 61 s £9 1°161 HY
omc”w 8o“.“ ooouw 81 J 888 Bupeey esedg P
05¢°2 000°T 000°8 T b £9 0°vs suyeb Jeiog
00G'T 000°T 000’8 o1 d £9 €728 suisb (ejuepiour
006'T 000'T 000'Z & ©
00C'€ 000°S 000°T #T U
o %0's o0'g g . o
000" 000°6 0006 T 3
000°€ 008 000°6 OF
000°¢ 000°T 0006 6 I
000t 000'T 000°T B8 Y
000°0 000'S 00T £ B
00U°0 000°§ 000'S 9 4
0000 O000°6 000°G G @ kA
0060 ©000'6 0006 ¥ B ; 1eauspi I
000°0 00G'F 0006 £ O
000°0 000'T 0006 Z 9
00C°0 000'T O000'FT T ®
IP4C~00 Z|P0-00 4{PIO-03 X|X03I0A|
U0T3daods Uf $60713404

g g

o

€ ruo13diuosap BuUIP] 1NQ BUuNp UCIFEWIOJU] JURPUNDSL
C 3O uD|3ED1 $10adS BXIW|ULIE 0} JIPJO :_onww.ngu.“ ““
B|J1s AR SWJO) SISA|EUR Y} Y} PaLS '3

_.__a“aana-n_v 111 sauo BuISIXS) MO|aq padedsip g_un_i: ol ouy

|
l!. 111 SWJ0S JUINB|BJ 3y *DIdo} paysanbau ay] =J_‘ A0GWI UO|SS8S _mmo-..&c.o__ payanys ayeq

£ 0} UOISSADSIP JO SN0 A} YDYINS SUOKING -u-u._. @
l

£ pu3 Juoay Jusbt||a3u] 3dAY030U
‘_c:o_ Jas() addy uesn

- c
N -

or

Lie]

| sweu unop

101

Piie evme s et . e tmm i s

3

This button switches the focus of discussion to

ic and material properties of this J
geonetry sust be given.

polygonat
¢

the geometr
buiiding. Firstly, the
Several alternative input mechanisms are provided

1 8

102

Figure 4 Collage of the Geometry Input Options

	title: Implementation of Simulation Based Design Tools in Practice
	subject: User Interfaces - 2
	author: J. A. Clarke, D.F. Mac Randal
	keywords:

