HVAC COMPONENT MODEL LIBRARIES FOR EQUATION-BASED SOLVERS

Edward F. Sowell
Department of Computer Science
California State University, Fullerton
Fullerton, CA 92634

Michael A. Moshier

Department of Mathematics and Computer Science
Chapman University
Orange, CA 92667

ABSTRACT

This paper discusses development of a library of
equation-based models for building HVAC system
simulation. The main source of the models is the
ASHRAE Secondary Systems Toolkit (Brandemuehl
1993), augmented with primary system models from
other sources in order to provide a library sufficient to
model conunon HVAC systems. While the target of this
work was the Simulation Problem Analysis Research
Kernel (SPARK), a number of issues arising in
construction of the library are of interest whenever
models are to be expressed in equationbased,
non-algorithmic form Among other results, it is shown
that models of this nature benefit from finer modular
granularity than equivalent component-oriented
models, and that there are important issues of
connectability and computational efficiency that can be
addressed with a new approach to modeling units of
physical measure.

INTRODUCTION

Component-oriented simulation environments long
have been used to construct computer models of
building heating and cooling systems (Klein,
Beckman, and Duffie 1976, Park, Clark, and Kelly
1985). The principal attraction of this approach has
been modeling flexibility, whereby an analyst could
assemble a model configured to match the actual
building system rather than being constrained to
selection from a fixed set of preprogrammed system
models. Recent developments in non-algorithmic
(i.e., equation-based) modeling (Klein 1991, Sahlin
and Bring 1991), equation-based solving (Buhl et
al. 1993), component model standardization (Sahlin
and Sowell 1989), and model structuring principles
(Mattsson 1988) now promise to further the
flexibility and efficiency of the component-oriented
approach. In addition to stimulating development of
entirely new component-oriented modeling tools, it
can be anticipated that many of these emerging ideas
will find their way into existing component oriented
simulation environments, as well as new versions of
the whole-building simulators.

While many users of the component-oriented
environments routinely construct their own
component models for special elements, a basic

library of standard elements, such as cooling coils
and fans, has been of fundamental importance in
their wide-spread acceptance. Likewise, a
comprehensive library adapted to the newer
technology will be required. Such libraries will
differ from existing libraries in several fundamental
ways. First, the models will be non-algorithmic so
that the greater flexibility of input/output free
modeling (Mattsson 1988) can be allowed in model
formulation. Second, the models will be expressed
at a finer level of granularity so as to maximize code
reuse and maintainability. Beyond this, these
models eventually will be expressed in a
standardized, neutral format (Sahlin and Sowell
1989) so they can be automatically translated to the
expected variety of simulation environments.
Achieving these goals raises a number of interesting
issues, including optimal model granularity,
submodeling, units of measure, validation, code
maintenance, and solution efficiency.

LIBRARY CONTENT

‘Library content, in terms of kinds of components

189

represented and the level of model detail, depends
upon intended use. Because the development of
SPARK and related work traditionally has been
focused on building energy conservation, the basic
SPARK HVAC library is aimed at energy analysis
over an annual period using a one-hour time step.
Consequently, the equipment models of interest are
steady-state mass, energy, and moisture balances.
Pressure-flow relationships are not included;
instead, flow rates are to be viewed as determined
by control laws or specified inputs. Also, the library
model for zone loads is a simple air heat balance,
relying on time-varying load profiles from other
environments such as DOE-2.

The basic library is intended to support modeling of
HVAC systems typically employed in commercial
buildings such as constant volume reheat, variable
air volume reheat, and dual duct systems. These
systems deliver a heated and/or cooled mixture of
return and outside air to the -onditioned spaces.
Heating of the air streams is accomplished with hot
water coils (heat exchangers) or electric resistance
heaters, while cooling is by means of chilled water
or direct expansion coils which also provide

ANTAC ANTAC
189

ANTAC ANTAC

dehumidification. ‘Fans and damper boxes set air
flow rates, either fixed or modulated according to a
control strategy. The set of components dictated by
this requirement, Table 1, is a subset of the
ASHRAE Secondary Systems Toolkit, augmented
by chiller, boiler, and cooling tower models from
DOE-2.

Table 1. SPARK HVAC Library

Air System

Fan

Mixing box

Diverter

Heating coil

Cooling coil

Air-to-air Heat Exchanger

Direct Evaporative Cooler

Indirect Evaporative Cooler

Humidifier

Zone

Water System

Pump

Valve

Controls

Economizer

Proportional

Heat/Mass transfer

NTU Heat Exchanger

Dry Coil

| Wet Coil

Bypass factor

DX Unit

Psychrometrics

Saturation Temperature

Enthalpy

Humidity Ratio

Dew Point

Relative Humidity

Specific volume

Moist Density

Wet Bulb

Primary equipment

Boiler

Chiller

Cooling Tower

Systems & Integration

Constant Volume Reheat

Variable Volume Reheat

Dual Duct

LIBRARY STRUCTJRING PRINCIPLES

Beyond content, ahbraly is characterized by the
principles upon which it is structured. For example,
the ASHRAE Toolkit is based on the principles of

algorithmic models and modularity, as expressible in
FORTRAN. Also, it represents relatively course
granularity. Other characteristics include use of SI
units, and use of mass flow, temperature, and
humidity ratio as the primary interfacing variables.
The structuring principles used in the SPARK
library and supporting rational are developed below.

Interface Variables and Units

Customarily, a library is based on a common set of
interface variables and units of physical measure.
This is necessary, because otherwise the component
models could not be easily interconnected. Interface
sets in common use within the HVAC modeling
community include (Air volume flow rate,
Temperature, Relative Humidity), (Mass flow rate of
dry air, Temperature, Humidity Ratio), and (Mass
flow rate of dry air, Enthalpy, Humidity Ratio). The
first set is of greatest familiarity to U.S. HVAC
practitioners, but is not well suited to modeling
because these are not the quantities appearing in the
conservation equations, necessitating conversions
during the simulation. The last set is closest to the
conservation laws, but enthalpy is less familiar to
some practitioners than temperature. The second set
is a compromise. The mass and humidity variables
can be used directly in the conservation equations.
Although enthalpy must be calculated for these
conservation equations, the temperature is directly
available for the heat transfer relationships. It has
the added advantage of being the set employed in the
ASHRAE HVAC 2 Toolkit. Units of the interface
variables is a separate question. If it were expected
that U.S. HVAC practitioners would be the main
users of SPARK, the English IP system would be
preferred. However, most researchers in the field
would probably prefer SI units. All considered, it
was decided to use the second set as component
interface variables in SI units for the SPARK basic
library. This is not ideal because of varying user
needs, and conversion objects, both for
psychrometrics and units of measure, must be used.
We shall return to these questions in New Directions
below, where we propose a better alternative for
future development. :

Model Expression

It is widely recognized that any simulation
environment for building energy systems requires
models for the same basic set of physical
components as given in Table 1. Ideally, there
should be a single representation made accessible to
all simulation environments. The Neutral Model
Format (NMF) (Bring, Sahlin, and Sowell 1992)
fills this need, providing a rigorous, non-
algorithmic syntax for mathematical model
definition that can be automatically translated to
various environments. Indeed, prototype translators

190

have already been implemented for SPARK and IDA
(Kolsaker 1993).

For the above reasons it was initially proposed that
the NMF be used to express the basic component
model library in this project. Unfortunately, it
became necessary to temporarily set this decision
aside and express the library directly in SPARK
syntax. The reasons for this decision were twofold.
First, it became apparent that the translator would
not be ready in time to support model development;
experience has shown that models must be tested,
and as a practical matter testing cannot be carried
out on code that cannot be executed. The second
reason is that there is great advantage to extensive
use of submodeling in equation-based models, and
as of this writing the NMF does not support a
submodeling facility. It is hoped that these two
shortcomings of the NMF can be resolved and that
this library can later be reexpressed in the NMF.

Equation-based Modeling

Today, most computer models are expressed as a
sequence of a assignments. Such models are called
algorithmic or input/output oriented because they
relate a prescribed set of outputs to a prescribed set
of inputs by means of a prescribed algorithm. Such
models are now recognized as being limited in
flexibility when compared to equation-based models.
The distinction is that although the physical laws
being enforced are the same, with algorithmic
modeling every selected input set requires a separate
algorithmic model. In principle, there may be as
many as ny//(n,ng)! n,!l different algorithmic
models for a single mathematical model involving
n,, variables and n, equations, differing only in the
specified input set.! Clearly it is better to express
the model one time, strictly in terms of the
underlying equations. In this form, the model itself
is free from any designation of inputs and outputs.
This is called an equation-based model because the
constraints among variables are expressed by
equality rather than assignment. The term non-
algorithmic is also appropriate because no sequence
of evaluation or assignment to variables is implied,
both of which characterize algorithmic models. At
time of use of the model, one particular input set is
specified, thus defining a problem. Assuming that
the problem is well-posed, equation oriented solving
environments (e.g., SPARK and IDA) generate an
algorithm for solution.

Submeodeling and Model Granularity

Equation based models can be packaged in several
different ways, and one important distinguishing

1Some of these may not represent well-posed problems.

feature is submodeling capability. Another is the

fineness of model granularity when submodeling is
employed. For example, in SPARK (Buhl et al.
1993, Buhl, Sowell, and Nataf 1989) each individual
equation is a separate object, resulting in fine
granularity. This we call the equation-object
approach. However, the equation objects are most
often encapsulated in macro objects, which can refer
to both equation objects and other macro objects.
Thus the macro object affords a submodeling
capability for SPARK. Importantly, however, the
macro objects are disassembled to equation objects
prior to simulation, so the fine granularity is
exposed to the solver.

An alternate approach is to package all equations
related to a particular physical component in a single
module while still retaining the non-algorithmic
property. This approach, which we might call
equation-modular, is employed in IDA. A third
approach, sometimes called simultaneous-modular
(Chen and Stadtherr 1985), also packages multiple
equations together, but the modules are algorithmic
and the solver sees only the interface variables. The
latter method is not truly equation based, but the
flexibility of arbitrary input/output set designation is
attained by forming residual equations based on
assigned module output variables. Although not yet
described in the literature, the most recent version
of TRNSYS is reputed to work on this basis. With
either the equation-modular or the simultaneous
modular approach the equations themselves are not
individually accessible to the solver, hence they are
characterized as having coarse granularity.

The finer granularity of the equation-object approach
offers solution efficiency advantages over the coarser
granularity approach. This is because any equations
and variables hidden within modules are not
available to the solving environment. In contrast,
the equation-object approach exposes all equations
and variables, thus allowing automatic construction
of efficient solution algorithms. This is
demonstrated in the SPARK methodology. Briefly
described, this method employs matching on a
bipartite graph to match equations to variables,
followed by discovery of a small set of iteration
variables (a cut set) in the directed graph
representing data flow in the problem. With this
approach, the solution process can iterate on fewer
variables, offering potentially dramatic efficiency
gains.

The fineness of granularity of the equation-object
approach also enhances maintainability and code
reuse. For example, an HVAC library must
implement a wide variety of psychrometric
functions. Among these functions are several key
relationships upon which all others depend, such as

191

ANTAC ANTAC
191

the equation of state, the relationship between vapor
pressure and temperature for water at saturation,
and the enthalpy equation. However, there are
several mathematical models for representing these
basic functions, so one might ask how difficult it is
to switch to a different model. When the equation
object approach is employed a decision to change
from, say, the ideal gas law to the Virial equation of
state is implemented by the substitution of a single
new object. Moreover, there is maximum code
reuse since the equation code exists in a single place.
In contrast, conventional practice often repeats code
for each equation where needed.

It should be noted that some of the advantages of
fineness inherent in the equation-object approach
can be attained in the equation-modular and
simultancous-modular approaches by using
functions. For example, the ubiquitous
psychrometric relations can be expressed as
functions, thus making them available for multiple
use and centralizing their maintenance. However,
functions are normally expressed algorithmically so
that whenever a relationship is needed with alternate
input/output sets it is necessary to have multiple
implementations. For example, if we sometimes
need Psat(Tsat) and other times need T'sat(Psat) two
functions are required in spite of there being a single
underlying mathematical model.

EXAMPLES

The application of the above structuring principles
can be demonstrated by looking at subsets of the
total library. Here we show a partial implementation
of the psychrometric and heat exchanger subsets.

Psychrometrics

Psychrometrics are fundamental to HVAC models.
The ASHRAE Handbook of Fundamentals
(ASHRAE 1993) gives the basic relationships. An
example of the equation-object implementation is
provided by the dew point relationships:

P, = psat(t)
W = MW_RATIO * P/ (Poem —

(1)

P, (2)

Equation (1) is the relationship between water vapor
pressure P, and dry bulb temperature db at
saturation, while Eq. (2) is the relationship among
humidity ratio w, vapor pressure, and atmospheric
pressure P gz, Each is implemented as an equation
object in the SPARK library, as shown below:

/* SPARK object satpress.obj */
define satpress(t, p)
double t[T], pl[P]:

pwsdb (t) ;
dbpws (p) ;

P
t

/* SPARK object humratio.obj */
define humratio(patm, pw, w)
double patm[P], pw[P], w[wl:;

1]

7W
pw

wfpwp (pw, patm);
pwfwp (w, patm);

fl

Note that the argument list defines the interface to
the object as well as their units. In the body of the
object each interface for which there is a convenient
explicit inverse is equated to a function representing
this inverse. For example, wfpwp(pw, patm) is Eq.
(1), while pwfwpw, patm) is the same equation,
but solved for pw. The functions can either be
expressed as C functions, or can be interpreted at
run time. The inverses can be generated
symbolically by a computer algebra tool such as
MACSYMA. In fact, the SPARK MACSYMA
interface automatically generates the SPARK object
file and the C functions for the inverses, given only
the object equation in the form <expression> =
<expression> (Nataf and Winkelmann 1992).

The dew point object can then be implemented as a
macro object, which just connects equation objects
together for modeling convenience. In the SPARK
syntax this is:

/* SPARK object dewpt.obj */

macro

declare humratio hr;
declare satpress sp:
link PwDB(hr.pw, sp.p)
link patm(hr.patm)
link db(sp.t)
link w(hr.w)

Here we see hwmratio and satpress objects
instantiated with declare statements. The first link
statement equates the p interface of the safpress
object with the pw interface of the humratio object.
This will be recognized as the essence of the dew
point concept. The common vapor pressure is
named PwDB by the link statement. The other link
statements each have a single interface in their list.
These therefore do not form connections like the
first link, but still serve to "name" the vanables
within the macro object, effectively elevating them
to be interfaces to the macro object. Thus this macro
object can be connected into other macros objects (or
SPARK problems) through patm, db, w, and
PwDB, although the last would not be viewed as a
proper interface since it plays only an internal role.

Another interesting psychrometric relationship is
that for wet bulb temperature. This property for any
psychrometric point, say (db, w), is defined as the
dry bulb temperature at the intersection with the
saturation curve of a line of constant enthalpy

192

ANTAC ANTAC
192

passing through (db,w). Using the superscript * to
represent this intersection point, the following

simultaneous equations define the wet bulb
temperature property:
h = CP AIR * db + w * (CP_VAP * db
+ HF _VAP) (3)
hs* = CP_AIR*t™ +
ws™* (CP_VAP*t"+HF VAP) (4)
ws* = MW _RATIO * pws”/(patm -
pws ™) (5)
pws* = psat(t*) (6)
h + (ws® - w) * CP_WAT * t*= hs”™

7

Equations (3) and (4) define the enthalpy at (@b, w)
and (t*, ws*) respectively. Equations (5) and (6)
ensure that (t*, ws*) lies on the saturation curve.
Finally, Eq. (7) is an energy balance of air
undergoing an isenthalpic process from (db, w) to
* ws*) (ASHRAE 1993).

It is seen that Eqs. (3-6) define important
psychrometric properties, namely enthalpy,
humidity ratio, and saturation pressure (or
temperature). As such, they find wide use other
than defining wet bulb temperature and are therefore
natural candidates for equation objects in the library.
Equation (7), however, defines no new property and
is unlikely to be useful other than here. Nonetheless,
we define it as an equation object in the library
because SPARK currently has no construct for
equations outside equation objects. For want of a
better name, we call it eq3] after its numbering in
the ASHRAE Handbook.

Assuming then that we have equation objects for
each of the above equations, the wet bulb macro
object is expressed as:

/* SPARK object wetbulb.obj */
macro

declare enthalpy el, e2;
declare humratio hr;
declare satpress sp;
declare eg3l eq3l;
link patm(hr.patm) [P]
link db(el.db)[T]
link h(el.h, eq3l.h) [h]
link w(el.w,eq3l.w) [w]
link hs_star(eq3l.hs_star,
e2.h) [h]
link ws_star(eq3l.ws_star,
e2.w, hr.w) [w]
link t_star{eq3l.t_star,
e2.db, sp.t) [T]
link pws_star(hr.pw,

sp-p) [P]

Figure 1 shows a diagrammatic representation of the
wet bulb macro object. Some SPARK users benefit

‘from such a diagram during development of macro

objects. Others are comfortable with a simple
textual representation of the equations in the
mathematical model, i.e., Eqs.(3-7).

~ Figure 1. Diagrammatic representation of the wet

bulb object.

It is instructive here to consider other advantages of
equation-object modeling. In conventional modeling
practice, Eqgs. (3-7) are algebraically reduced to a
single equation which is then solved iteratively when
the model is used. There are several disadvantages
of this approach. For one thing , the underlying
model is obscured. More importantly, the benefits
of code reuse are not realized. For example, if one
later wished to use a more accurate enthalpy model,
the wet bulb model would have to be changed. Or
worse yet, its hidden use might cause the wet bulb
object not to be changed, resulting in differing
definitions of enthalpy within the model. With the
fine granularity of the equation-object approach, a
change of a single enthalpy object in the library
would immediately take effect in wet bulb as well as
all other models in which it plays a role.2 Finally, it
will be observed that the iterative solution process is
not part of the wet bulb model. Instead, when wet
bulb occurs in a problem, the needed iteration can
be handled by the global solution process.

Heat Exchangers

Heat and mass exchange devices play key roles in
HVAC systems. Heating and cooling coils are liquid
to air heat exchangers, heat recovery is done with
air to air heat exchangers, and in central plant
equipment there are numerous examples of liquid to
liquid heat exchangers. All of these devices can be
modeled with the same general model of a heat
exchanger.

The basis of all heat transfer equipment models in
the library (as in the ASHRAE Toolkit) is the well

2We concede that customary algorithmic, modular modeling could

offer the same advantage provided that the importance of fine
granularity was observed with abundant use of functions.

193

ANTAC ANTAC
193

known Ntu-Effectiveness model (Kays and London
1984). Expressed in equation-object form we have:

ntup = ua/capl (8)
cRatiop = capl/cap2 (9)
effp = effctr(cRatiop, ntup) (10)
qRef = capl*(tinl-tin2) (11)
effp = gq/qref (12)
effp * gqRef = capl*(tinl-toutl) (13)
effp * gqRef = cap2* (tout2-tin2) (14)

These equations are packaged into a SPARK macro
called htxctr, a counterflow heat exchanger.

The difference between this model and the one
presented in the Toolkit deserves explanation. First,
in order to facilitate "backwards solving" usage, as
required in design calculations, the Kays and
London model was revised to use the first flow
stream Capl as a reference instead of Cmin. This
eliminates the minimum function which is non-
invertable. Additionally, instead of a single
effectiveness function with a configuration
parameter to select the flow arrangement, we
implement five separate effectiveness objects, giving
five different heat exchanger models differing in the
declaration of the class for the effectiveness object.
Justification for this is partially on grounds of
improving invertability. As a result, we are often
able to solve for heat exchanger size from design
point specifications without iteration. Additionally,
the implementation avoids the need for a
configuration parameter which would have to be
passed up through interfaces of any submodels of
which the heat exchanger becomes a part. Actually,
the heat exchanger becomes a submodel of several
other component models. These include the air-to-
air heat exchanger, heating coil, dry cooling coil,
and (modified for enthalpy) in the wet cooling coil.
All of these are modeled as macro objects.

NEW DIRECTIONS

In the course of this project we observed a number of
opportunities to improve model structuring, possibly
leading to better future model libraries. Here we
shall discuss three that appear to be particularly
important, namely the handling of dimensions,
units of measure, and fluid properties.

Polymorphic Dimensional Analysis

As seen above, SPARK supports a simple fype
checking system that permits the model writer to
enforce compatibility of units. For example, in our
library of components, a heat exchanger can only be
connected via links that have the appropriate units:
mass flow, temperature, and so on. At the same
time, SPARK also supports a form of polymorphism,
whereby a link declared to have generic units
suppresses the type checking. This allows general

use of a single class, e.g., product, or sum, where

194

otherwise a separate object class would be required
for each set of units.

However, dimensional analysis is a powerful check
on the physical realizability within a system of
equations, and this check is lost with the generic
unit concept. There is nothing to prevent linking
two lengths and a volume to the three generic links
at the interface of a product object. Thus we are
encouraged to either abandon the present generic
link unit, or to enrich the type checking to produce
a stronger form of polymorphism called dimensional
polymorphism. We propose to enrich the type
checking system, in the three following ways: 1.
Replace the notion of generic link with the notion of
a "dimension variable." This would allow an object
to have "generic links" that still require some
matching of types; 2. Give the type checking
system access to derived dimensions. For example,
the links to the product object might be declared to
have the dimensions Q, R, and Q*R. That would
yield one of the fundamental constraints of
dimensional analysis; 3. Incorporate the algebraic
laws pertaining to dimension in the type checking
system.

Without going into details, the sum object could then
model the heat balance equation as (with unit terms
in brackets):

qliQ] = q0[Q] + dqld(Q)]

Here we show the use of the dimensional difference
operator d() which derives a new unit based on the
difference between quantities of some given unit.
This is also used to distinguish between temperature
units and difference in temperature units, as in the
conductance object

qlQ] = ul2[Q/d(T)]1*(tl[T]

Any attempt to connect this object to other links
would require that the various terms be unifiable;
there must be a solution to a system of Abelian
group equations that associates with such
connections. Coupling Abelian group unification
with a mechanism for giving names to derived units,
e.g., area = length?, would give SPARK a tool for
constructing and using generic models in a way that
guarantees the level of physical realizability that one
expects of dimensional analysis.

- t2[T])

Fluid links and unit conversions

A related problem is posed by units, as distinct from
dimensions. By the word unit, we understand a
specific metric associated with a dimension, such as
meters or kilograms. A similarly related problem is
how to handle the complexes of quantities that
represent such things as moist air.

ANTAC ANTAC
194

A familiar problem in modeling is that of standard
units. Should we express quantities in SI or English
units? This has a trivial solution in most cases:
simply pick one and enforce it throughout the model.
The problem becomes more complicated if we wish
to facilitate the integration of models that may have
already been constructed on a different standard.
The user must then know that when linking an
English object to an SI object a conversion object
must be interposed. This is a nuisance to the user
and adds to execution time and problem size. The
impact could be relieved by choosing a standard, say
SI, and then wrapping any English object inside the
needed conversions. In other words, we could
produce new macro objects that simply couple
English objects with the needed conversions, thus
presenting SI units at the interfaces. The problem
with this, however, is what happens to the run time
problem when two thus modified English objects are
connected. The run time model would include
equations to convert from English to SI and
immediately back to English, causing two
unnecessary equations.

A similar, and perhaps more serious, situation
obtains between models involving psychrometric
quantities. To see this, recall that dry bulb
temperature, humidity and enthalpy are related,
giving two degrees of freedom. Now, certain
processes are more easily modeled in terms of
enthalpy and humidity (e.g., mixing boxes),
whereas others are more easily modeled in terms of
temperature and humidity (such as heat transfer).
Here the exact same problem arises for the
psychrometric quantities as it does for mismatched
ordinary units. Model writers are faced with the
same poor choices: force the user to know internal
details (whether a model uses enthalpy or
temperature internally) that have no bearing on the
physics of the component; or standardize and incur
hidden, spurious equations when connecting
components actually needing no conversion.

These two situations pose exactly the same
mathematical problem, ie.,, they represent
projections of coordinates from one subspace to
another of similar dimension. We will not review
here the elements of projective geometry, but simply
point out that if we solve the problem of mismatched
standards for psychrometric quantities, then we will
solve the problem of mismatched ordinary units.
One possibility that shows promise is to allow
complexes of links to be bundled under a single
name, and then associated with a system of
unification equations. For example, an air complex
link might include links for temperature, humidity
and enthalpy, along with the needed system of
psychrometric equations, while a temperature link
might include three simple links for Kelvin, Celsius

and Fahrenheit, along with the needed conversion
equations.3 To generalize, the equations associated
with a complex link may be called conversion
equations.

While these ideas could be applied to other modeling
environments as well, they are particularly well
suited to SPARK. One implementation would be to
construct the problem graph in the normal way,
then "prune” it to remove objects that produce
variables not used elsewhere or reported. This is an
easy task with well known graph traversal
algorithms.

These ideas for complex links with on-demand
conversion equations is still in its early stage, but we
are confident that it can be implemented. Conversion
equations with polymorphic dimensional analysis
will allow the model developer to express the
physical content of a model free of the mundane
concerns about standard interfaces and unit
conversions.

CONCLUSIONS

We have reported on an effort to convert an existing
modular, algorithmic HVAC component library to
an equivalent equation-object representation,
targeted primarily for the SPARK environment. We
have attempted to explain the choices available
during the course of this development, and to
rationalize the decisions taken. Arguments were
presented for the advantages of the fine-grain,
equation-object approach, as opposed to the more
coarse-grained equation-modular approach to
equation-based modeling. While both offer the
advantages of input/output free modeling, the
former additionally offers opportunities for improved
"back solving" without iteration, thus reducing run
time, and better code reuse and maintainability. In
addition, the project called to attention several issues
of model structuring, such as handling of units and
dimensions in model expressions. An approach
based on unification and projective geometry was
outlined. We believe this approach solves not only
problems with unification of ordinary dimensions
and units, but also connecting diverse component
model implementations in which interface variables
include complexes of variables, such as moist air
properties, in an ideal manner.

ACKNOWLEDGEMENTS

This work was sponsored by the Assistant Secretary
for Conservation and Renewable Energy, Office of
Building Technologies, Building Systems and
Materials Division of the U.S. Department of Energy

3This is similar to the idea of property links recently suggested by
Kolsaker for the NMF.

195

ANTAC ANTAC
195

under Contract No. DE-AC03-76SF00098.
Lawrence Berkeley National Laboratory. We would
also like to thank the organizers and participants of
the Building Simulation '95 Conference for the
opportunity to share our work.

REFERENCES

ASHRAE. Handbook of Fundamentals.
Am. Soc. of Heating, Refrigerating,
conditioning Engineers. 1993

Brandemuehl, Michael J. HVAC 2 Toolkit: A Toolkit
Jor Secondary HVAC System Energy Calculations.
Joint Center for Energy Management, University of
Colorado. ASHRAE 629-RP. 1993.

Bring, Axel, Per Sahlin, and Edward F. Sowell. The
Neutral Model Format for Building Simulation.
Royal Institute of Technology, Dept. of Building
Services Engineering, Stockholm. Bul. 24. 1992.

Buhl, W. F, A. E. Erdem, F. C. Winkelmann, and
E. F. Sowell. "Recent Improvements in SPARK:
Strong Component Decomposition, Multivalued
Objects, and Graphical Interface," In Proceedings of
Building Simulation '93 (Adelaide) International
Building Performance Simulation Association.
Available from Soc. for Computer Simulation
International, San Diego, CA, 283-90. 1993.

Buhl, W. F., E. F. Sowell, and J-M. Nataf. "Object-
oriented Programming, Equation-based Submodels,
and System Reduction in SPANK," In Proceedings
of Building Simulation '89 (Vancouver, BC)
International Building Performance Simulation
Association, 141-146. 1989.

Chen, H-S., and M. A. Stadtherr. "A Simultaneous-
Modular Approach to Process Flowsheeting and
Optimization." AIChE Journal 31 (11) : 1843-1855.
1985.

Atlanta:
and Air-

Kays, W. M,, and A. L. London Compact Heat
Exchangers. 3rd ed. New York: McGraw-Hill Book
Co. . 1984.

Klein, S. Engineering Equation Solver (EES). F-
Chart Software. 1991.

Klein, S. A., W. A. Beckman, and J. A. Duffie.
*"TRNSYS- A Transient Simulation Program."
ASHRAE Transactions 82 (1) : 623-33. 1976.

Kolsaker, K. "Recent Progress in Fire Simulation
using NMF and Automatic Translation to IDA," In
Building Simulation '93 (Adelaide, Australia)
International Building Performance Simulation
Association, 555-560. 1993.

Mattsson, S. E. "On Model Structuring Concepts,"
In Proceedings of the 4th IFAC Symposium on
Computer-aided Design in Control Systems
(CADCS) (Lund) 1988.

‘Nataf, J-M., and F. C. Winkelmann. Automatic

Code Generation in SPARK: Applications of
Computer Algebra and Compiler-compilers.
Simulation Research Group, Lawrence Berkeley
Laboratory. NTIS, LBL-32815. 1992.

Park, C., D. R. Clark, and G. E. Kelly. "An
Overview of HVACSIM+, a Dynamic
Building/HVAC Control Systems Simulation
Program," In Proceedings of the First Building
Energy Simulation Conference, Aug. 21-22.
(Seattle, WA) International Building Performance
Simulation Association. 1985.

Sahlin, P., and A. Bring. "IDA Solver- A Tool for
Building and Energy System Simulation," In

Proceedings of Building Simulation '91 (Nice,
France) Society for Computer Simulation,
International, San Diego, CA, 339-348. 1991.

Sahlin, P, and E. F. Sowell. "A Neutral Format for
Building Simulation Models," In Proceedings of
Building Simulation '89 (Vancouver, BC)
International Building Performance Simulation
Association, 147-54. 1989.

196

ANTAC ANTAC
196

	title: HVAC component model libraries for equation-based solvers
	subject: Simulation methology
	author: Edward F. Sowell
	keywords:

