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Abstract 

This paper investigated temperature-dependent models 

in predicting PV yield. Seven different models based on 

different approaches (i.e., constant temperature, physics-

based and statistical methods) are summarized and 

compared through a case study of Wuhan area in China. 

The case study shows the limitations of using the 

constant temperature approaches. The case study reveals 

that a constant PV cell temperature specified in NOCT is 

much higher than those predicted by the non-constant 

methods for all walls and roofs in the studied area. As a 

result, NOCT substantially underpredicts the PV yield. 

Another constant temperature model, STC, yields the PV 

power prediction in good agreement with the non-

constant methods but over-predicts the PV power during 

the summer time. The case study also shows significant 

difference in the PV cell temperature prediction due to 

the choice of the model, but relatively smaller impacts 

on the PV output power.  

Introduction 

In recent years, interest in utilising solar potential in 

urban areas has been rising. Many solar map products of 

different cities or regions have been developed to 

provide information about received solar energy 

distributed over the area in terms of irradiance amount 

(kWh/m2) or intensity (W/m2) on building roofs and 

building facades. These solar maps show the results of 

daylight simulation that uses GIS data and historical 

weather data as inputs to predict solar potential for a 

whole urban area. Prediction of solar potential has been 

performed to evaluate planning policies and guidelines 

with respect to their effect on solar availability (Kanters 

and Wall, 2016) and quantify the impact of new urban 

developments on the performance of existing solar 

collectors (Zomer and Rüther, 2017). Prediction of solar 

irradiance is also a necessary step to identify the most 

solar-potential locations in the urban fabric for solar 

collectors. 

In addition to solar irradiance prediction, PV system 

model is necessary to predict energy generation. PV 

system converts solar energy into electricity, but 

conversion efficiency decreases when PV cell operating 

temperature rises. Existing research found that different 

PV operating temperatures affected the amount of PV 

yield as much as 30% (Radziemska, 2003). In order to 

improves the prediction accuracy, latest improvement 

was made in PV yield models to incorporate the 

temperature dependence of PV performance. A key 

element for prediction of PV yield is predicting PV cell 

operating temperature that impacts PV system efficiency. 

Different models, ranging from high-fidelity physics-

based models to simplified models, have been developed 

to predict PV cell operating temperature (Skoplaki et al., 

2009; Dubey et al., 2013). Existing models can be 

grouped into three types: (1) constant temperature 

models, (2) physics-based models, and (3) statistical 

models. Constant temperature methods simply use a 

constant value of PV cell operating temperature to 

determine the PV yield regardless of weather and PV 

working conditions. Physics-based methods are the most 

studied in the field with large number of established 

models. These models are based on a simplified form of 

the physical model and include correlation coefficients 

that capture the effect of key physical variables to 

simplify certain parts of the physical model. Many of 

them correlated PV module temperature as a function of 

diode PV model electronic parameters: resistance, 

current, voltage, and band gap (Yordanov et al., 2012) 

and system-dependent properties such as glazing-cover 

transmittance and plate absorptance (Skoplaki et al., 

2009). Statistical models, on the other hand, require 

much less inputs as they are typically based on the 

simplest mathematical equation, often derived from the 

physical model and derive unknown model coefficients 

by fitting the model to the measured PV yield data. 

Some of the latest statistical models also use artificial 

intelligent methods to predict the temperature. Further 

discussion of these models and methods will be provided 

in the next section. Existing study has been looking into 

the impact of temperature dependent model at national 

level and found a maximum of 20% difference of PV 

yield given different locations and season in the U.S. 

(Bayrakci et al., 2013).  

The paper aims to investigate the effect of different 

temperature-dependent models on the PV cell 

temperature and PV yield prediction for solar analysis of 

building surfaces in urban environments. An urban area 

in Wuhan, China is used as a case study to predict solar 

irradiance distributed over the urban fabric and compare 

PV cell operating temperature and PV yield predictions 

computed by different models.   



Existing PV cell operating temperature 

models 

Before investigating different PV cell operating 

temperature models, it is worth describing the role of PV 

cell operating temperature in computing the PV output 

power as defined in the equation (1): 

P = 𝐺𝑇 𝛽𝑟𝑒𝑓 (1 +𝜂𝑟𝑒𝑓(𝑇𝑐 − 𝑇𝑟𝑒𝑓) (1) 

GT is the received solar irradiance, 𝛽ref is the PV 

conversion rate under the reference (STC) temperature 

(Tref = 25℃). 𝜂ref is the temperature coefficient of the 

PV module. Common values for 𝛽ref and 𝜂ref are 

summarised in Table 1, Tc is the PV cell operating 

temperature calculated by the models compared in this 

study.  
 

Table 1: PV module properties  
 

 Tref 𝜂ref 

polycrystalline-silicon PV 13.0% -0.48 % 

amorphous-silicon PV 5.5% -0.20% 

*Values provided through a survey by HOMER (2017)   
 

Table 2 lists three different sets of methods developed to 

predict PV cell operating temperature Tc. In total, seven 

methods are summarised in the table and grouped into 

three types in terms of their mathematical formulation 

and input requirements. The performance of the listed 

methods will be investigated through a case study in the 

latter section.  
 

Table 2: Existing models and methods  
 

Type Model Reference 
Constant 

temperature 

STC (Munoz et al., 2011) 

NOCT (Koehl et al., 2011) 

Physics-based Skoplaki’s model (a) (Skoplaki et al., 2008) 

HOMER model (HOMER, 2017) 

Empirical Ross 

coefficient method 

(Ross, 1976) 

Statistical  Skoplaki’s model (b) (Skoplaki et al., 2008) 

Muzathik’s model (Muzathik, 2014) 

Constant temperature  

Constant temperature methods assume the PV module 

operates at a fixed temperature all the time regardless of 

weather conditions and dynamic PV working conditions. 

Hence, using constant temperature models always yields 

a fixed PV conversion rate throughout the year. This 

type of methods may be useful when one requires a 

quick estimation of PV yield. The most commonly used 

temperatures are standard test condition temperature 

(STC) and nominal operating cell temperature (NOCT). 

Standard test conditions are specific laboratory 

conditions that represent peak sunshine on a surface 

directly facing the sun in a day without clouds. PV 

modules are tested under STC as follows: irradiance of 

1000W/m2; a surface temperature of 25°C; a light 

spectrum that closely simulates sunlight; air mass at 

1.5G given a standard temperature and water 

vapour content (Munoz et al., 2011).  These are idealized 

conditions, which does not reflect the real PV system 

operation conditions. Indeed, often, PV systems operate 

at higher temperatures than STC due to the heat received 

from the sunlight and high ambient temperature.   

A new test standard NOCT was established to reflect the 

real PV operation conditions. In NOCT, the assumed 

irradiance is 800 W/m2, which takes into account the fact 

that PV modules don't always face the sun. It also 

considers atmospheric or geographic conditions what 

might diminish sunshine. Heat convection is also 

considered with a wind speed of 1 m/s at 20°C ambient 

temperature (Koehl et al., 2011). Under this condition, 

the measured cell temperature of a certain PV module is 

then defined as NOCT. PV manufacturers typically 

report the NOCT of their products as part of 

manufacturer’s catalogues. One survey of commercially-

available PV modules in 2007 summarised that about 60% 

of the PV products have NOCT values ranging from 

45°C to 48°C (HOMER, 2017). A medium value of 

46.5°C is assigned as NOCT in our case study for 

comparison of different models.  

Although NOCT was developed to reflect more realistic 

PV cell operating temperature than STC temperature, it 

ignores actual dynamic weather conditions such as solar 

radiation and ambient temperature and, as a result, 

undermines the predication accuracy under dynamic 

weather conditions that vary from the assumed standard 

conditions. A study measured the PV cell operating 

temperatures of four different types of insulated PV 

panels for 9 months in Gaithersburg, Maryland, and 

revealed the unsuitability of using NOCT to predict the 

PV cell operating temperature under varied irradiance 

conditions as shown in Figure 1. (Davis et al., 2002). 

NOCT did not represent the dynamic behaviour of PV 

systems, and the discrepancy between NOCT and 

measured temperatures was up to 20 °C. Nonetheless, 

the constant temperature methods are still commonly 

used in the industry to estimate PV yield. 

 

 

Figure 1: Temperature difference using NOCT 

compared to measurements. (Davis et al., 2002) 

 

https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Water_vapor
https://en.wikipedia.org/wiki/Water_vapor


Physics-based methods 

Physics-based models have been developed to compute 

dynamic PV operating cell temperatures. For a detailed 

analysis of PV systems, high-fidelity dynamic simulation 

models have been used to accurately predict PV surface 

temperatures (Lobera and Valkealahti, 2013). However, 

for urban-scale analysis, we believe relatively simple 

physics-based models are more suitable given the scale 

of analysis and limited data about individual buildings. 

Thus, two simplified physics-based models on the basis 

of the steady-state energy balance concept were 

investigated. 

Skoplaki et al. (2008) developed a physics-based 

algorithm to calculate actual PV cell operating 

temperatures in relation to NOCT that is measured and 

provided by the manufacturers’ catalogues. They 

developed the formula below, adopted by many studies, 

that predict PV cell operating temperatures on the basis 

of physical properties of the cell and weather conditions 

(i.e., ambient temperature, solar irradiance, and wind 

speed): 

𝑇𝑐 =
𝑇𝑎 + (

𝐺𝑇

𝐺𝑁𝑂𝐶𝑇
)

ℎ𝑤,𝑁𝑂𝐶𝑇

ℎ𝑤
(𝑇𝑁𝑂𝐶𝑇 − 𝑇𝑎,𝑁𝑂𝐶𝑇)[1 −

𝜂𝑛𝑒𝑓

𝜏𝛼
(1 + 𝛽𝑛𝑒𝑓𝑇𝑟𝑒𝑓)]

1 −
𝛽𝑛𝑒𝑓𝑇𝑟𝑒𝑓

𝜏𝛼
(

𝐺𝑇

𝐺𝑁𝑂𝐶𝑇
) (

ℎ𝑤,𝑁𝑂𝐶𝑇

ℎ𝑤
)(𝑇𝑁𝑂𝐶𝑇 − 𝑇𝑎,𝑁𝑂𝐶𝑇)

 

 

(2) 

GNOCT and Ta,NOCT denote standard settings used to 

measure NOCT; the first refers to the irradiance of 

800W/m2, and the latter refers to the ambient 

temperature of 20℃.  Ta,NOCT indicates NOCT (46.5 ℃ 

used in the case study). The solar transmittance of the 

PV panel is denoted as 𝜏, and the solar absorptance of 

the panel is denoted as α. α𝜏 value is commonly 

assumed to be 0.9 (Duffie and Beckman, 1991). GT 

indicates the magnitude of solar irradiance on the PV 

panel, which can be obtained by daylight simulation or 

provided by existing solar maps. Ambient temperature Ta 

is obtained from publicly available hourly weather data, 

but using this data assumes that ambient temperature in 

the entire urban area is the same. hw indicates convective 

heat transfer coefficient, which heavily depends on the 

wind speed. Among a wide range of convective heat 

transfer coefficient equations in the literature (Palyvos, 

2008), Skoplaki et al. (2008) used a linear regression 

model that correlates the coefficient to wind speed 

(Loveday and Taki, 1996) as below: 

hw= 8.91 + 2.0Vf (3) 

Where Vf is the free stream wind speed. Similar to the 

ambient temperature, publicly available wind speed data 

for the meteorological region corresponding to the case 

study area is used for the entire urban area. Hence, the 

equation (1) only captures the effect of regional weather 

conditions on the PV performance, but does not present 

different PV performances within the urban area due to 

varying microclimate conditions.  

Another model, simplified from the formula above, was 

developed by Duffie and Beckman (1991) as defined in 

(4). The model assumes the same convective heat 

transfer coefficient as the nominal conditions throughout 

the year. Except this assumption, the formula is almost 

identical to the Skoplaki’s model, and presents the effect 

of the PV system characteristics, solar irradiance, and 

ambient temperature on the PV operating temperature. 

Further description of the model is provided in (HOMER, 

2017).  

𝑇𝑐 =
𝑇𝑎 + (

𝐺𝑇

𝐺𝑁𝑂𝐶𝑇
) (𝑇𝑁𝑂𝐶𝑇 − 𝑇𝑎,𝑁𝑂𝐶𝑇)[1 −

𝜂𝑛𝑒𝑓

𝜏𝛼
(1 + 𝛽𝑛𝑒𝑓𝑇𝑟𝑒𝑓)]

1 −
𝛽𝑛𝑒𝑓𝑇𝑟𝑒𝑓

𝜏𝛼
(

𝐺𝑇

𝐺𝑁𝑂𝐶𝑇
) (𝑇𝑁𝑂𝐶𝑇 − 𝑇𝑎,𝑁𝑂𝐶𝑇)

 

 

(4) 

The third chosen model is a semi-empirical model with a 

Ross coefficient: 

𝑇𝑐 = 𝑇𝑎 + 𝑘𝐺𝑇 (5) 

In this linear expression, the Ross coefficient k expresses 

temperature rises above the ambient temperature due to 

the increasing solar flux (Ross, 1976): 

𝑘 = 𝛥(𝑇𝑐 − 𝑇𝑎)/Δ𝐺𝑇 (6) 

The Ross coefficient value suggested by existing studies 

ranges between 0.02–0.04 Km2/W (Buresch, 1983; Ross, 

1976). An IEA study provides standard Ross coefficient 

values depending on the level of integration and 

mounting types (Nordmann and Clavadetscher, 2003). 

Table 3 lists typical coefficient values for different 

mounting types provided by the IEA study. 

Table 3: Standard values of the Ross coefficient k for 

various mounting types 

PV array mounting type k (Km2/W) 

Free standing 0.021 

Flat roof  0.026 

Sloped roof: well cooled  0.020 

Sloped roof: not so well cooled 0.034 

Sloped roof: highly integrated, poorly 

ventilated 
0.056 

Façade integrated: transparent PV 0.046 

Façade integrated: opaque PVs  0.054 

 

The Ross coefficient values in Table 3 are used in our 

case study with scenarios of varying mounting types.  

Statistical models  

In general, existing statistical models can be categorised 

into two types: artificial intelligence methods and linear 

models. Artificial intelligence methods include artificial 

neural networks (Ceylan et al., 2014) or adaptive neuro 

Fuzzy inference system (Bassam et al., 2017). The main 

advantages of these methods are their versatility to 

capture complex trends, but as they are black-box 

models, they do not explicitly show relationships 

between explanatory variables and dependent variable. 

Linear models, on the other hand, are the simplest 

approach that captures linear trends between the key 

environmental variables and PV cell operating 

temperature.     

Two statistical models were chosen in this paper for 

comparison. The first one is the Skoplaki’s semi-

empirical model, simplified version of the fomula (1): 

https://www.homerenergy.com/products/pro/docs/3.11/references.html#solar_power
https://www.homerenergy.com/products/pro/docs/3.11/references.html#solar_power


𝑇𝑐 = 𝑇𝑎 + (
0.32

8.91 + 2.0𝑉𝑓

)𝐺𝑇 (7) 

The formula correlates the PV cell operating temperature 

to the three environmental variables:  ambient 

temperature (Ta), free-stream wind speed (Vf), and solar 

irradiance received on the PV cell (GT). The temperature 

estimated by the model showed a difference of less than 

3 ℃  in comparison to its original formula (1) (Skoplaki 

et al., 2008). However, as this statistical model was 

derived on the basis of the data collected from free-

standing PV systems, its applicability to other forms of 

PV mounting needs to be investigated.  

The second statistical model chosen in this study is 

Muzathik’s model (Muzathik, 2014): 

𝑇𝑐 = 0.943𝑇𝑎 + 0.0195𝐺𝑇 − 1.528𝑉𝑓 + 0.3529 (8) 

The model correlates Tc with the same set of three 

environmental variables. It was developed by fitting a 

linear regression model to measured data from a 

polycrystalline silicon PV module mounted on the 

wooden frame on a flat roof in Malaysia. This model 

was demonstrated to show less than 1.5 ℃ difference 

compared to measurements (Muzathik, 2014). However, 

unlike the the semi-empirical models, the performance 

of the linear regression model without explicit 

expression of  underlying physics highly relies on the 

training data used for model development. Hence, the 

applicability of the linear model to other climate 

conditions needs to be tested. 

Case study 

We compare the performance of the chosen methods 

through a case study of Wuhan urban area in which all 

building surfaces are assumed to be implemented with 

PV modules to achieve the maximum solar potential of 

the entire urban area. A 0.72 km2 city area (1.2 km  0.6 

km) located in Hankou district in Wuhan, China was 

selected as a case study. Urban geometry in the studied 

area, including building roofs and ground surfaces 

(Figure 2), was assumed to be flat as Wuhan is located in 

plain region and slope roofs or curved envelopes are not 

common in the chosen area. A window to wall ratio of 

0.3 was given to all buildings in the studied urban area. 

Solar irradiance of all surfaces was calculated by the 

simplified method recently developed by Liao and Heo 

(2017), which was validated against the advanced 

daylight simulation software (Radiance). 10m  10m 

mesh grid was applied to each of the building surfaces, 

and the calculated irradiance of each mesh represents the 

received irradiance of PV modules located in the 

corresponding surface.  

In this study, we considered two types of PV systems: 

polycrystalline-silicon PV systems for opaque roofs and 

walls and amorphous-silicon PV systems for transparent 

windows. Since the Ross method requires the 

information of PV mounting types, we assumed that half 

of roofs are equipped with free standing PV modules, the 

other half with flat roof PV modules, all walls with 

opaque PV modules, and all windows with transparent 

PV modules. PV electricity yield was calculated using 

the formula (1).  

In the case study, the different methods are compared in 

terms of the PV cell temperature and PV yield at 

different time resolution scales: solar peak time (noon) 

and monthly scale.  

 

Figure 2: Illustration of the urban geometry  

 

Results  

Figure 3 shows the average irradiance at noon 

throughout the year (365 noons) for individual roofs and 

walls. The noon time represents the peak solar irradiance, 

which is used as standard test conditions for constant 

temperature models. The standard solar intensity 

conditions (i.e., 1000 W/m2 for STC and 800 W/m2 for 

NOCT) are far higher than the range of solar radiation 

for roofs and walls in the studied urban area. More 

interestingly, the urban shading caused by surrounding 

buildings result in wide variation in the received 

irradiance for both roofs and walls. Especially for walls, 

received irradiances vary from 50W/m2 to 400W/m2. 

Differences in the received irradiance for roofs are 

relatively smaller since roofs are usually less shaded 

than walls.  

 
Figure 3: Average irradiance on all roofs and walls at 

noon  

Given these various irradiance conditions, we calculated 

the PV cell temperature using the seven methods. Figure 

4 shows the box plot of PV cell temperature of all 

building surfaces at noon time, calculated by among the 

different methods. Results show that NOCT is much 



higher than all the other predictions while STC is close 

to the average temperatures (denoted as *) calculated by 

the non-constant methods. Among the non-constant 

methods, Empirical Ross computes the highest value 

with an average of 28.2℃ , followed by HOMER 

(Tc=25.9℃) and Skoplaki’s (b) (Tc=24.7℃). Muzathik 

linear model yields much lower values (Tc=18.72℃) 

than the other methods. This may be due to the inability 

of the statistical model to extrapolate from the Malaysia 

weather data used for model development to Wuhan 

weather conditions. In addition, significant differences 

are observed in the range of PV cell temperatures 

predicted by the non-constant methods. Empirical Ross 

method results in a difference of 20℃ in the PV cell 

temperature whereas the other methods results in a 

difference of around 10 ℃. Since the same hour data of 

ambient temperature and wind speed is used for the 

entire studied area, differences in the predicted PV cell 

temperature at noon time are due to the differences in the 

received solar intensity as a result of different 

orientations and mutual shading conditions.  However, 

for monthly and yearly predictions, the temporal 

variation in the ambient temperature and wind speed can 

be accounted for in prediction of the cell temperature 

depending on the choice of the model.  

 

 
Figure 4: predicted PV cell operation temperature of all 

urban surfaces at noon  

 

As roofs and walls receive quite different levels of 

irradiance, we closely looked into the performance of the 

different methods separately for roofs and walls. PV cell 

temperature predictions at noon time for the roofs are 

shown in Figure 5. All the non-constant methods except 

Muzathik method yields cell temperatures approximately 

5 to 10 Co higher than STC, but still much lower than 

NOCT. For the roofs, the variation in the cell 

temperature is very small (around 3 oC). The differences 

in the average PV cell temperature predicted by the non-

constant methods are also very small. The prediction 

results for the walls are shown in Figure 6. As the walls 

take up more than 70% of the total surfaces, the 

predictions of the PV cell temperature for the walls are 

quite similar to the overall results. A significant variation 

in the PV cell temperature is observed for the walls due 

to shading effects of surrounding buildings in urban 

environments. In addition, Empirical Ross method 

results in a much wider range of the cell temperature 

predictions than the other methods as it uses a different 

coefficient depending on the PV mounting type. In 

general, STC seems a reasonable value used to predict 

PV peak yield for walls, but for roofs, neither STC nor 

NOCT reflects the results calculated by the non-constant 

models.   

 

 
Figure 5: predicted PV cell temperatures of roofs at 

noon  

 

 
Figure 6: predicted PV cell temperatures of walls at 

noon  

 

We have so far compared the methods in terms of their 

predictions for the peak irradiance period. However, one 

of key performance indicators used for urban-scale solar 

analysis is the total PV yield throughout the year. Hence, 

monthly PV cell temperature and PV output power are 

used for further analysis. Figures 7 and 8 illustrate the 

monthly average PV cell operating temperature 

predictions during day time. The pattern of monthly 

temperature variations is quite similar between roofs and 

walls. However, the cell temperatures for roofs are 

constantly higher (2 - 8oC) than those for walls.  The 

magnitude of differences in the temperature prediction 

between different methods for both walls and roofs is 

similar: approximately 7 oC and 10 oC difference for the 



summer and winter, respectively. In general, differences 

in the monthly prediction by the non-constant methods 

are much larger than the peak-time prediction. This is 

expected as solar radiation intensity, ambient 

temperature, and wind speed substantially vary 

depending on the season, and the non-constant models 

have a different formula to incorporate their effect on the 

cell temperature. Except Muzathik’s method, all 

temperature-dependent methods compute similar PV cell 

operating temperature predictions. Muzathik’s method 

computes lower temperatures than the other methods, 

which are even lower than the ambient temperature. PV 

cell operating temperature is very unlikely to be below 

ambient temperature during day time due to solar heat 

gains. As Muzathik’s method is a linear regression 

model based on the hot climate data, it does not properly 

predict the cell temperature for other locations with 

milder climate conditions.  

 

 
Figure 7: Monthly average PV cell temperatures for 

roofs 

 

 

 
Figure 8: Monthly average PV cell temperatures for 

walls 

 

Figures 9 and 10 illustrate the predicted monthly average 

PV output powers (W/m2) for roofs and walls, 

respectively. It is obvious that PV power outputs for 

roofs are a lot higher than for walls if we assume all 

walls, including heavily shaded ones, are implemented 

with PV. However, it does not mean that walls are not 

suitable for PV applications as we can also clearly see in 

Figure 3 that a considerable number of walls receive 

sufficient irradiance. This suggests that the solar 

potentials of walls should be carefully examined with 

consideration of the mutual shading for selection of wall 

areas and design of PV systems. Owing to the low 

average irradiance on walls, different methods do show a 

very little difference in the PV power prediction. 

However, for roof predictions, they result in the 

difference, ranging between 4 to 10 W/m2. In general, 

STC yields PV power predictions close to the non-

constant methods except the summer season where STC 

prediction is higher than the others. As NOCT uses the 

much higher cell temperature than the non-constant 

methods, it substantially under-predicts the PV yield in 

comparison to the non-constant methods.  Differences in 

the PV power predicted by the different non-constant 

methods are approximately between 1 - 4 W/m2. The 

differences are smaller during the winter than during the 

summer.  

 

 

Figure 9: Monthly average PV yields for roofs 

 

 

Figure 10: Monthly average PV yields for walls 

 

Conclusion  

This paper investigated the value of incorporating 

temperature-dependent models in predicting PV yield at 

urban scale by comparing the existing PV cell operating 

temperature models through a case study of Wuhan area 



in China. Seven different models (i.e., constant 

temperature, physics-based, and statistical methods) 

were compared in terms of the PV cell operating 

temperature and PV electricity yield prediction. On the 

one hand, STC yields the monthly PV power prediction 

in good agreement with the non-constant methods but 

over-predicts the monthly PV power during the summer 

time. On the other hand, as NOCT is much higher than 

PV cell temperatures predicted by the non-constant 

methods, it substantially under-predicts the monthly PV 

yield throughout the year. The non-constant methods 

result in the quite similar results except Muzathik’s 

method, which highlights the usefulness of maintaining 

underlying physics in a simplified empirical model. The 

case study shows relatively significant differences in the 

PV cell temperature prediction but smaller impacts on 

the PV output power.   

This paper is part of an on-going research project with 

aim to develop the whole analysis package for urban-

scale evaluation of solar potentials in urban 

environments.  In addition to a simplified method 

already developed for urban-scale irradiance prediction 

(Liao and Heo, 2017), this paper provides a detailed 

comparison of different methods in terms of the PV cell 

temperature and PV yield. This comparison helps 

modellers make a well-informed decision about the PV 

system model by investigating the value of using more 

sophisticated methods such as physic-based models in 

comparison to constant temperatures. As the next step, a 

case study with varying design scenarios will be 

performed to evaluate the relevance of different levels of 

modelling methods, including irradiation models and PV 

system models, in design of urban-scale policy strategies 

or solar technologies.  

    

Nomenclature 

Vf free stream wind speed, m/s 

TNOCT Nominal Operating Cell Temperature, ℃ 

Tc PV cell operating temperature, ℃ 

Ta,NOCT 
ambient temperature under NOCT test 

condition, ℃ 

Ta ambient temperature, ℃ 

k Ross coefficient 

hw,NOCT 

wind-convection heat transfer coefficient 

under NOCT wind speed (1m/s) condition, 

W/m2K 

hw 
wind-convection heat transfer coefficient, 

W/m2K 

GT,NOCT 
solar irradiance under NOCT test condition, 

(800W/m2) 

GT received solar irradiance, W/m2 

α solar absorptance 

𝛽ref PV conversion rate at 25 ℃ 

𝜂ref PV temperature coefficient 

𝜏 solar transmittance 
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