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Figure 3: Effect of number of features and including lagged variables with linear regression. Different plots correspond
to data sets with different percent of missing entries. Different curves within each plot corresponds to data sets with
different number of lagged variables.

DISCUSSION AND RESULT ANALYSIS
Performance of using each algorithm to estimate missing
values was assessed over different data sets (both percent-
age of missing entries and number of periods of lagged
variables) and over different number of features/attributes.
Note that when no lagged variables are included, there
are only 91 attributes available for predicting the target
variable (original dataset contains 92 variables/columns).
Hence, we do not test the algorithms performance with 27

attributes when lagged variables equal none.

Linear regression imputation

Using linear regression to estimate missing values is im-
proved by including lagged variables from time t − 1 as
predictors (Figure 3). This trend can be observed across
different percentages of missing values and number of
features. This means that regardless of the number of pre-
dictors that were used, including lagged variables from
time t − 1 improves the algorithm’s performance. How-
ever, including more lagged variables (t − 2 and t − 3)
shows minimal improvements in accuracy. Figure 3 also
shows that across different percentages of missing values,
including more than 26 attributes might result in overfit-
ting and reduce overall accuracy. This method of imputa-
tion is accurate with estimated values having on average

0−3.5% deviation from the true values, depending on the
number of periods of lagged variables and the percentage
of missing entries (Figure 3).

kNN imputation

kNN estimation was evaluated using different number of
features and number of nearest neighbors k. The most
accurate estimation is achieved when k ≈ 6 and approxi-
mately 23−24 features are used for the estimation. Figure
4 shows the performance of using kNN estimation with 24

features over different values of k and for data sets with
different percentages of missing entries. This method of
imputation is relatively insensitive to the exact value of k
within the range of 2− 10. Within this range, the differ-
ence in average NRMSD is within approximately 0.1%
(Figure 4). Notably, the performance of kNN declines
when low number of nearest neighbors (k< 3) are used for
the estimation, probably due to overfitting. Performance
of the algorithm also declines when large number of near-
est neighbors (k > 10) are used for the prediction, indicat-
ing that some important details are being smoothed out.
Performance of kNN is also relatively insensitive to the
exact number of attributes (used for the prediction) within
the range of 23−25 (Figure 5). Within this range, change
in NRMSD is below 0.1%. This is consistent across data
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Figure 4: Effect of number of nearest neighbor k used for kNN estimation with 24 features. Different plots correspond
to data sets with different percent of missing entries. Different curves within each plot corresponds to data sets with
different number of lagged variables.

sets containing less missing entries (5%, 10% and 15%).
Similar to using linear regression, performance of using
kNN to estimate missing values is reduced by including
lagged variables from time t− 1 hour as predictors (Fig-
ures 4 and 5). However, including more lagged variables
(t − 2 and t − 3) shows minimal improvements in accu-
racy. This trend is consistent across different number of
features used for the imputation (Figure 5).

SVM imputation

SVM imputation was evaluated using different number of
features and hyperparameter (ε and C) values (Equation
4). One way to choose appropriate values for ε and C is
to use k-fold cross-validation (Hsu et al. 2003). The most
accurate estimation is achieved when ε≈ 2−7, C≈ 25 and
approximately 24− 25 features were used for the impu-
tation. Using SVM for imputation is very accurate after
tuning hyperparameters ε and C, showing approximately
1.25% deviation from the true values for the data set with
20% missing entries (Figure 6). Average NRMSD is the
lowest when with ε = 2−7 and cost C = 25. Performance
of SVM imputation declines when a larger value of ε and
C is used for the estimation. Large values of C places
more weight on the minimization of errors on the train-
ing data, resulting in overfitting and poorer generalization.
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Figure 5: Effect of number of features used for kNN esti-
mation on data set with 20% missing entries. Estimation
was carried out using kNN with k = 24. Different curves
corresponds to data sets with different number of lagged
variables.

Smaller values of ε result in better performance. However,
performance starts to decline as ε is decreased beyond
2−7. This trend observed in Figure 6 is representative of
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that observed across data sets with different percentages
(5%, 10%, 15% and 20%) of missing entries.
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C = 25.Different curves corresponds to data sets with dif-
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Mean imputation and replacing with zero

Replacing missing values with the attribute’s average or
with zeros are common preprocessing methods before the
data is used in various statistical techniques or as inputs to
building simulation models. Mean imputation, although a
drastic improvement from replacing with zeros has signif-
icantly lower accuracy than either linear regression, kNN

or SVM imputation (Table 3).

Table 3: Performance of mean imputation and replacing
missing values with zero.

Average NRMSD (%)
Percentage

Missing
Mean

Imputation
Replacing
with zero

5% 6.07 28.25
10% 8.25 39.35
15% 10.62 49.93
20% 11.96 56.19

Comparing algorithms
Replacing missing values with zeros shows the largest
spread of NRMSD with a minimum NRMSD of 11.3%
and a maximum NRMSD of 321.7% (Figure 8). Mean
imputation shows drastically better performance with 91
(of the 92) variables estimated with NRMSD under 20%
as compared to 22 (of the 92) variables if missing entries
were replaced by zero. Estimation with linear regression,
kNN or SVM yielded significantly better accuracy than
mean imputation, with all variables being estimated with
NRMSD under 6%. Linear regression was used with lag
variables from period t − 1 as predictors and with 25 at-
tributes selected using a correlation-based feature selec-
tion that selects the attributes with the highest correlation
with the target variable. kNN imputation was carried out
with k= 6, lag variables from period t−1 and 24 attributes
(selected via feature selection). SVM imputation was car-
ried out using the following parameter setting: ε = 2−7

and C = 25; lag variables from period t − 1; and 25 at-
tributes (selected via feature selection). When individual
algorithms are considered at their optimal parameter set-
tings, using SVM for estimating missing entries is more
accurate than other methods such as linear regression and
kNN. This can be observed from Figure 8 where the dis-
tribution of errors for SVM is more right-skewed as com-
pared to kNN and linear regression. When errors for indi-
vidual variables are considered, 25% of the variables were
estimated within 0.5% of its true value with SVM at the
above mentioned parameter setting. With linear regres-
sion and kNN, only 11% and 1% of the variables were es-
timated with NRMSD under 0.5% respectively. Notably,
maximum NRMSD is also lower with SVM imputation
(4.2%) as compared to linear regression (4.8%) and kNN
imputation (5.7%). Overall, SVM imputation shows con-
sistent performance across different types of data. For this
data set, accuracy using linear regression is comparable
and sometimes better because this data set is made up by
measurements from sensors measuring the same property
in different zones, thus the linear relationship between
many variables. For example, lighting power measure-
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ments are expected to have the same trend across different
office spaces in the building.
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Figure 8: Distribution of errors for different algorithms
at their optimal parameter setting for data set with 20%
missing entries.

Figure 9 shows the NRMSD of each of the 92 attributes
for linear regression, kNN and SVM imputation. Parame-
ter settings for each algorithm were as mentioned in the
previous paragraph. Linear regression and SVM have
comparative performance for attributes 1 to 70 (mostly
lighting, equipment and network power measurements)
with kNN having lower accuracy in general. However, lin-
ear squares regression shows significantly higher NRMSD
for some attributes between attributes 70 and 92. These
attributes contain measurements from AHU sensors. In
particular, air and water temperature measurements within
the AHU seems to show poorer performance with linear
regression. SVM with RBF kernel shows better accuracy
for these attributes probably because the relationship be-
tween the target and dependent variables are non-linear.

Simulation
We evaluate the impact of missing value imputation in ac-
tual application by comparing EnergyPlus hourly simula-
tion output with actual measurements. The objective is to
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Figure 9: NRMSD of each of the 92 attributes with dif-
ferent imputation method at their optimal parameter set-
tings.

illustrate how different methods of imputation may affect
model output, giving a false sense of accuracy. This is es-
pecially true in building energy models since these tools
usually requires inputs at an hourly resolution. Data from
July 24, 2015 to August 31, 2015 was used for model
training and data from September 1, 2015 to September
24, 2015 was used as the test data set. 20% of data was
randomly removed from the test data set. Missing val-
ues were imputed using different methods before they are
used as inputs to the EnergyPlus building energy simu-
lation model. The simulation output that was evaluated
are the lighting, equipment and network energy consump-
tion (Table 4). Accuracy was evaluated using coefficient
of variation of the root mean square error (CVRMSE)
and normalized mean bias error (NMBE), metrics that
are commonly used to evaluate calibrated building en-
ergy simulation models. According to (ASHRAE 2002),
if hourly calibration data are used, CVRMSE and NMBE
shall be below 10% and 30% respectively. Both mean
imputation and replacing with zero are common prepro-
cessing methods before data is used for simulation. Re-
placing with zero tends to underestimate energy consump-
tion as observed from its negative NMBE (Table 4). This
is expected since power measurements are typically posi-
tive. Mean imputation yielded results that are significantly
better accuracy (both CVRMSE and NMBE). However,
imputation with either linear regression, kNN or SVM
yielded simulation results that is significantly closer to ac-
tual values as compared to both methods (Table 4).

CONCLUSION
The objective of this paper is to illustrate the importance
of predicting missing values and how it may affect the
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Table 4: CVRMSE and NMBE of simulation with data imputation by different methods.
Lighting Equipment Power Network

Method CVRMSE NMBE CVRMSE NMBE CVRMSE NMBE
Replacing with zero 30.4% -18.7% 29.0% -19.7% 31.1% -20.4%

Mean imputation 21.3% 1.46% 8.08% -0.35% 15.1% -0.45%
Linear regression 2.46% 0.08% 2.18% -0.04% 0.62% -0.04%

kNN 2.99% -0.27% 2.26% 0.10% 0.75% -0.06%
SVM 2.49% -0.24% 2.12% -0.08% 0.68% -0.08%

accuracy of building energy simulation. This paper has
shown that linear regression, kNN and SVM are more
accurate for estimating missing values in building sen-
sor data as compared to replacing with zero or mean im-
putation. Linear regression shows better accuracy when
there is a linear relationship between the target and de-
pendent variables. On the contrary, SVM shows better
accuracy when this relationship is non-linear. All three
methods show significant improvements over replacing
with zero or mean imputation by taking advantage of the
patterns and relationships with other variables. Based on
the results of this study, we recommend SVM imputation
because of its ability to model non-linear relationships.
However, where there are many sensors measuring the
same property in different zones, linear regression shows
comparable and sometimes better performance. We also
recommend the inclusion of lagged variables from time
t−1 as predictors for better performance.
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